Preparing Your Students for Careers in Science and Engineering: How Is Your State Doing?

Susan White, Statistical Research Center, American Institute of Physics, College Park, MD
Paul Cottle, Florida State University, Tallahassee, FL

With one glance at the starting salaries of new bachelor’s degree recipients in Fig. 1, a teacher or parent can see the career fields to which their high school students interested in the best economic opportunities might aspire: several engineering fields (chemical, electrical, mechanical), computer science, physics, and mathematics.

And which high school courses do these students need to take to prepare best for these fields? Common sense likely suggests higher-level math and science courses. Research agrees: taking physics and calculus in high school is the best preparation for students who want to pursue degrees in science, technology, engineering, and math (STEM).

A group from the Departments of Sociology and Anthropology and the Center for Career and Community Research at the University of South Florida examined the critical role that course-taking in physics and calculus plays in preparing students for bachelor’s degree programs in STEM fields.1 Their results are illustrated in Figs. 2 and 3, which depict bachelor’s degree attainment rates by the highest math and science courses students have taken in high school. In each figure, the top panel illustrates the attainment rate for a bachelor’s degree in any field. The STEM degree attainment rates are shown in the bottom panel.

The top panel in Fig. 2 demonstrates that taking Algebra 2 makes a great contribution to making a student college ready; students who continue through trigonometry, pre-calculus, or calculus are even better prepared for college. However, the bottom panel makes it clear that Algebra 2 falls far short of preparing a student for success in a STEM bachelor’s degree program—continuing through calculus is clearly a much better strategy for a student with STEM aspirations. In fact, students who complete calculus in high school are almost seven times more likely to earn a bachelor’s degree in a STEM field than those whose top math course is Algebra 2.

Figure 3 makes a similar case in science. While chemistry is associated with being college ready (top panel), it takes physics to make a student STEM ready (bottom panel). A student who completes physics is twice as likely to complete a bachelor’s degree in a STEM field than one who takes only chemistry; taking a second course in either subject increases the likelihood of earning a STEM degree even more. This likely seems self-evident to most high school physics teachers, but it is generally not appreciated among teachers in other fields—even other science fields—and principals. In fact, staff at the American Physical Society hired a marketing firm to address the issue2 and The Physics Teacher has published an article about how to recruit students into physics classes.3

The degree to which students are well prepared for bach-
The answer is given by a paper published in the journal *Science* by researchers in Ohio, Maryland, and China. They pre-tested freshmen students in their universities before they took physics at college using two well-validated assessment instruments—the Force Concept Inventory and the Brief Electricity and Magnetism Assessment. The differences between the score distributions of the American and Chinese students are striking and reflect the high priority given to pre-college physics instruction in Chinese schools. Ohio (rated “average” by the SERI) and Maryland (rated “above average”) are clearly not able to compete with the Chinese in physics preparation. Furthermore, it is unlikely that any American state can at present, including Massachusetts. It is likely that Chinese students outperform students from all states.

At present Massachusetts defines the level of excellence for American states. Other states should examine the Massachusetts model to see how to improve the preparation of K-12 students for success in college and beyond.

**Technical note**

The data for the Advanced Placement exams come from the College Board and represent every student who took the respective AP® exam.

For the physics-taking data, AIP surveyed a nationally representative sample of 1/6 of all the schools, both public and private, in the U.S. and extrapolated up to population estimates controlling for state, type of school (public/private), and size of school (number of seniors). So the physics-taking numbers, while they come from a sample of students, are calculated and intended to represent all students.

Likewise, the NAEP data are also derived from statewide representative samples. The “About State NAEP” web page (nces.ed.gov/nationsreportcard/about/state.asp) states: “NAEP provides results about subject-matter achievement, instructional experiences, and school environment, and reports these results for populations of students (e.g., fourth-graders) and subgroups of those populations (e.g., male students or Hispanic students).”

In both cases where a sample was used, statistical sampling procedures were used to insure that the sample data are representative of the entire population.

Finally, the National Council for Teacher Quality data are...
based on NCTQ's analysis of state policies regarding state high school science licensure requirements.

The authors used the data as reported.

References


Paul Cottle is the Steve Edwards Professor of Physics at Florida State University. His research examines nuclear structure physics in exotic nuclei. Cottle is also involved in K-12 science standards and teacher education.

cottle@phy.fsu.edu

Susan White is Research Manager in the Statistical Research Center at the American Institute of Physics. She directs the quadrennial nationwide survey of high school physics teachers.

swwhite@aip.org